#Fundamentals Of Predictive Text Mining PDF

Download full Fundamentals Of Predictive Text Mining Book or read online anytime anywhere, Available in PDF, ePub and Kindle. Click Get Books and find your favorite books in the online library. Create free account to access unlimited books, fast download and ads free! We cannot guarantee that book is in the library. READ as many books as you like (Personal use).

Fundamentals of Predictive Text Mining

by Sholom M. Weiss
Publisher: Springer
Release Date: 2015-09-07
Genre: Computers
Pages: 239 pages
ISBN 13: 1447167503
ISBN 10: 9781447167501
Format: PDF, ePUB, MOBI, Audiobooks, Kindle

GET EBOOK

Synopsis : Fundamentals of Predictive Text Mining written by Sholom M. Weiss, published by Springer which was released on 2015-09-07. Download Fundamentals of Predictive Text Mining Books now! Available in PDF, EPUB, Mobi Format. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. -- This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

RELATED BOOKS
Fundamentals of Predictive Text Mining
Language: en
Pages: 239
Authors: Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Categories: Computers
Type: BOOK - Published: 2015-09-07 - Publisher: Springer

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.
Fundamentals of Predictive Text Mining
Language: en
Pages: 226
Authors: Sholom M. Weiss, Nitin Indurkhya, Tong Zhang
Categories: Computers
Type: BOOK - Published: 2010-06-14 - Publisher: Springer Science & Business Media

One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.
Fundamentals of Predictive Analytics with JMP, Second Edition
Language: en
Pages: 406
Authors: Ron Klimberg, B. D. McCullough
Categories: Computers
Type: BOOK - Published: 2017-12-19 - Publisher: SAS Institute

Written for students in undergraduate and graduate statistics courses, as well as for the practitioner who wants to make better decisions from data and models, this updated and expanded second edition of Fundamentals of Predictive Analytics with JMP(R) bridges the gap between courses on basic statistics, which focus on univariate and bivariate analysis, and courses on data mining and predictive analytics. Going beyond the theoretical foundation, this book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. First, this book teaches you to recognize when it is appropriate to use a tool, what variables and data are required, and what the results might be. Second, it teaches you how to interpret the results and then, step-by-step, how and where to perform and evaluate the analysis in JMP . Using JMP 13 and JMP 13 Pro, this book offers the following new and enhanced features in an example-driven format: an add-in for Microsoft Excel Graph Builder dirty data visualization regression ANOVA logistic regression principal component analysis LASSO elastic net cluster analysis decision trees k-nearest neighbors neural networks bootstrap forests boosted trees text mining association rules model comparison With today’s emphasis on business intelligence, business analytics, and predictive analytics, this second edition is invaluable to anyone who needs to expand his or her knowledge of statistics and to apply real-world, problem-solving analysis. This book is part of the SAS Press program.
Text Mining and Visualization
Language: en
Pages: 337
Authors: Markus Hofmann, Andrew Chisholm
Categories: Business & Economics
Type: BOOK - Published: 2016-01-05 - Publisher: CRC Press

Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain how text data are gathered and processed from a w
Practical Predictive Analytics and Decisioning Systems for Medicine
Language: en
Pages: 1110
Authors: Linda Miner, Pat Bolding, Joseph Hilbe, Mitchell Goldstein, Thomas Hill, Robert Nisbet, Nephi Walton, Gary Miner
Categories: Computers
Type: BOOK - Published: 2014-09-27 - Publisher: Academic Press

With the advent of electronic medical records years ago and the increasing capabilities of computers, our healthcare systems are sitting on growing mountains of data. Not only does the data grow from patient volume but the type of data we store is also growing exponentially. Practical Predictive Analytics and Decisioning Systems for Medicine provides research tools to analyze these large amounts of data and addresses some of the most pressing issues and challenges where data integrity is compromised: patient safety, patient communication, and patient information. Through the use of predictive analytic models and applications, this book is an invaluable resource to predict more accurate outcomes to help improve quality care in the healthcare and medical industries in the most cost–efficient manner. Practical Predictive Analytics and Decisioning Systems for Medicine provides the basics of predictive analytics for those new to the area and focuses on general philosophy and activities in the healthcare and medical system. It explains why predictive models are important, and how they can be applied to the predictive analysis process in order to solve real industry problems. Researchers need this valuable resource to improve data analysis skills and make more accurate and cost-effective decisions. Includes models and applications of predictive analytics why they are important and how they can be used in healthcare and medical research Provides real world step-by-step tutorials to help beginners understand how the predictive analytic processes works and to successfully do the computations Demonstrates methods to help sort through data to make better observations and allow you to make better predictions
Practical Text Analytics
Language: en
Pages: 272
Authors: Steven Struhl
Categories: Business & Economics
Type: BOOK - Published: 2015-07-03 - Publisher: Kogan Page Publishers

In an age where customer opinion and feedback can have an immediate, major effect upon the success of a business or organization, marketers must have the ability to analyze unstructured data in everything from social media and internet reviews to customer surveys and phone logs. Practical Text Analytics is an essential daily reference resource, providing real-world guidance on the effective application of text analytics. The book presents the analysis process so that it is immediately understood by the marketing professionals who must use it, so they can apply proven concepts and methods correctly and with confidence. By decoding industry terminology and demonstrating practical application of data models once reserved for experts, Practical Text Analytics shows marketers how to frame the right questions, identify key themes and find hidden meaning from unstructured data. Readers will learn to develop powerful new marketing strategies to elevate customer experience, solidify brand value and elevate reputation. Online resources include self-test questions, chapter review Q&A and an Instructor's Manual with text sources and instructions.
Proceedings of the 5th Brazilian Technology Symposium
Language: en
Pages: 652
Authors: Yuzo Iano, Rangel Arthur, Osamu Saotome, Guillermo Kemper, Reinaldo Padilha França
Categories: Technology & Engineering
Type: BOOK - Published: 2020-12-15 - Publisher: Springer Nature

This book presents the proceedings of the 5th Edition of the Brazilian Technology Symposium (BTSym). This event brings together researchers, students and professionals from the industrial and academic sectors, seeking to create and/or strengthen links between issues of joint interest, thus promoting technology and innovation at nationwide level. The BTSym facilitates the smart integration of traditional and renewable power generation systems, distributed generation, energy storage, transmission, distribution and demand management. The areas of knowledge covered by the event are Smart Designs, Sustainability, Inclusion, Future Technologies, IoT, Architecture and Urbanism, Computer Science, Information Science, Industrial Design, Aerospace Engineering, Agricultural Engineering, Biomedical Engineering, Civil Engineering, Control and Automation Engineering, Production Engineering, Electrical Engineering, Mechanical Engineering, Naval and Oceanic Engineering, Nuclear Engineering, Chemical Engineering, Probability and Statistics.
Marketing Data Science
Language: en
Pages: 225
Authors: Thomas W. Miller
Categories: Business & Economics
Type: BOOK - Published: 2015-05-02 - Publisher: FT Press

Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Handbook of Research Methods in Careers
Language: en
Pages: 352
Authors: Wendy Murphy, Jennifer Tosti-Kharas
Categories: Business & Economics
Type: BOOK - Published: 2021-06-25 - Publisher: Edward Elgar Publishing

This Handbook of Research Methods in Careers serves as a comprehensive guide to the methodologies that researchers use in career scholarship. Presenting detailed overviews of methodologies, contributors offer numerous actionable best practices, realistic previews, and cautionary tales based on their vast collective experience of research in the discipline.
Web and Network Data Science
Language: en
Pages: 384
Authors: Thomas W. Miller
Categories: Computers
Type: BOOK - Published: 2014-12-19 - Publisher: FT Press

Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.
Modeling Techniques in Predictive Analytics
Language: en
Pages: 384
Authors: Thomas W. Miller
Categories: Computers
Type: BOOK - Published: 2014-09-29 - Publisher: FT Press

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more
Data Mining and Big Data
Language: en
Pages: 569
Authors: Ying Tan, Yuhui Shi
Categories: Computers
Type: BOOK - Published: 2016-07-04 - Publisher: Springer

The LNCS volume LNCS 9714 constitutes the refereed proceedings of the International Conference on Data Mining and Big Data, DMBD 2016, held in Bali, Indonesia, in June 2016. The 57 papers presented in this volume were carefully reviewed and selected from 115 submissions. The theme of DMBD 2016 is "Serving Life with Data Science". Data mining refers to the activity of going through big data sets to look for relevant or pertinent information.The papers are organized in 10 cohesive sections covering all major topics of the research and development of data mining and big data and one Workshop on Computational Aspects of Pattern Recognition and Computer Vision.